

ISE

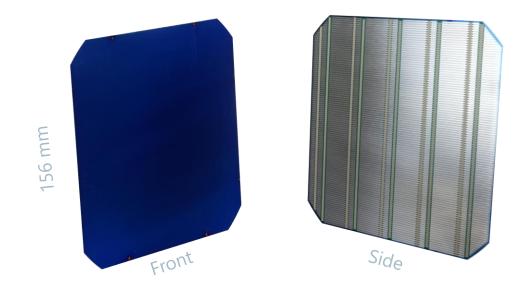
Back-contact solar cells at Fraunhofer ISE

Jonas D. Huyeng, Raphael Efinger, Tadeo Schweigstill, Tobias Fellmeth, Li C. Rendler, Andreas Brand, Alma Spribille, Martin Heinrich, Ulrich Eitner, Roman Keding, Florian Clement

Major advantages and challenges for IBC Back-contacted solar cells

Advantages of IBC solar cells

- Improved front side light absorption
- Very appealing aesthetics

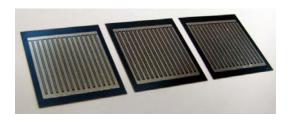

•

- One sided interconnection, tighter spacing
- Soft breakdown in reverse bias

Challenges for IBC mass manufacturing

- More complex processing, increased number of process steps
- Higher accuracy in manufacturing necessary
- Adjusted interconnection and module integration

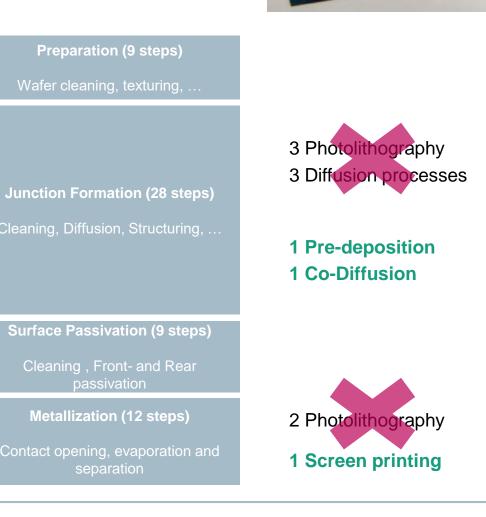
• ...



Back-Contact Back-Junction Silicon Solar Cells Development at Fraunhofer ISE

- Fraunhofer ISE picked up BCBJ 25 years ago
- Development of homojunction silicon solar cells
 - Diffused junctions
 - Metallization by PVD
 - Structuring by photolithography
 - More than 50 process steps involved …

		Area (cm²)	j _{sc} (mA/cm²)	V _{OC} (mV)	FF (%)	η (%)
1997	Glunz <i>et al.</i>	1	40.1	688	77.8	21.4
2002	Dicker <i>et al.</i>	1	39.8	698	79.4	22.1
2008	Granek et al.	4	38.8	665	82.5	21.3
2010	Reichel et al.	4	41.0	706	78.5	22.7
2012	Reichel et al.	4	41.2	697	80.0	23.0


Preparation (9 steps) 3 Photolithography 3 Diffusion processes **Junction Formation (28 steps)** Surface Passivation (9 steps) Metallization (12 steps) 2 Photolithography

Back-Contact Back-Junction Silicon Solar Cells Development at Fraunhofer ISE

- Fraunhofer ISE picked up BCBJ 25 years ago
- Development of homojunction silicon solar cells
 - Diffused junctions
 - Metallization by PVD
 - Structuring by photolithography
 - More than 50 process steps involved …

	Area (cm²)	j _{sc} (mA/cm²)	V _{OC} (mV)	FF (%)	η (%)
1997 Glunz <i>et al.</i>	1	40.1	688	77.8	21.4
2002 Dicker et al.	1	39.8	698	79.4	22.1
2008 Granek et al.	4	38.8	665	82.5	21.3
2010 Reichel et al.	4	41.0	706	78.5	22.7
2012 Reichel et al.	4	41.2	697	80.0	23.0

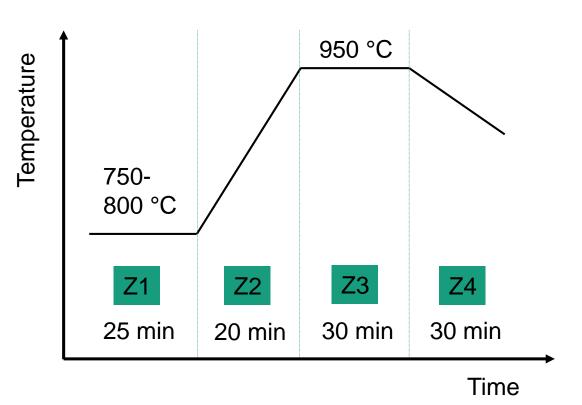
Our approach to minimize production effort

- Utilize one-sided inline processes for wet chemistry*
 - Texturing, front side etch-back
- Implement Co-Diffusion with screen-printed BSG
 - Co-Diffusion with POCl₃ (2-in-1, 3-in-1)
 - 3-in-1: Profile optimized for front side etch-back
- Use high quality surface passivation
 - ALD Al₂O₃ / PECVD SiN_x stack for rear side
- Realize metallization with single screen printing step
 - Suitable metallization and pattern for interconnection

* Not demonstrated, realized with masked batch processes

01

All Screen-Printed BC-BJ Solar Cells Lean manufacturing



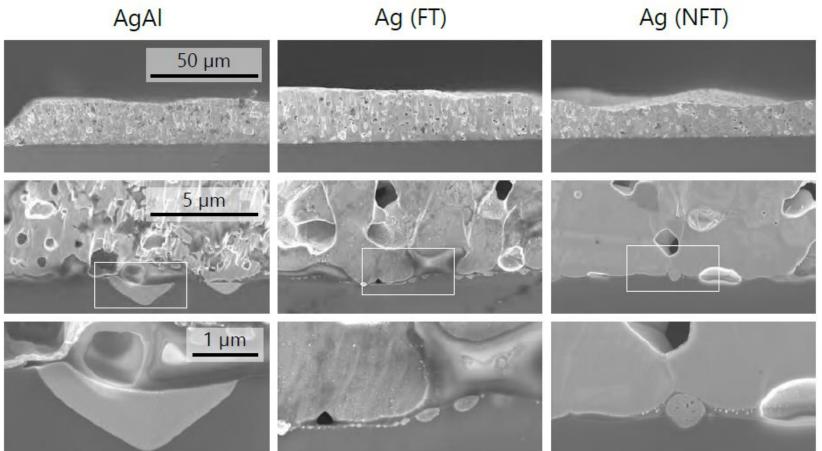
Co-diffusion setup

- Pre-deposition of (suitable) dopant sources
 - PVD, PECVD, APCVD, Functional materials (printing), …
 - Structuring if necessary
- Additional pre-deposition *in-situ* as an option
 - *e.g.* using POCI3 at medium elevated temperatures (750 °C – 800 °C)
- Drive-in of dopants at elevated temperature
 - e.g. at 950 °C for proper boron doping
- Challenges
 - Higher doping of P than B
 - Interference of B and P sources
 - Stability of sources
 - •

Schematic of Co-Diffusion

Sol-Gel based BSG-paste

- Adjusted synthesis process aiming at screen printing
- Drying / Solidification after printing at medium temperatures
- Achieved feature sizes
 - Positive: 89 μm ± 5 μm
 - Negative: 71 µm ± 4 µm
- Much smaller than necessary for BCBJ
- Diffusion of up to 1.8 x 10²⁰ cm⁻³ at wafer surface (950 °C, 30 min)
 - Sheet resistance down to 35 Ω/\Box
- Blocking of POCl₃ doping
- Cleaning with HF or adjusted etching
 - Surface passivation down to 62 fA/cm² (46 Ω/\Box , ALD Al₂O₃)
- Also compatible with laser doping



Screen printed metallization

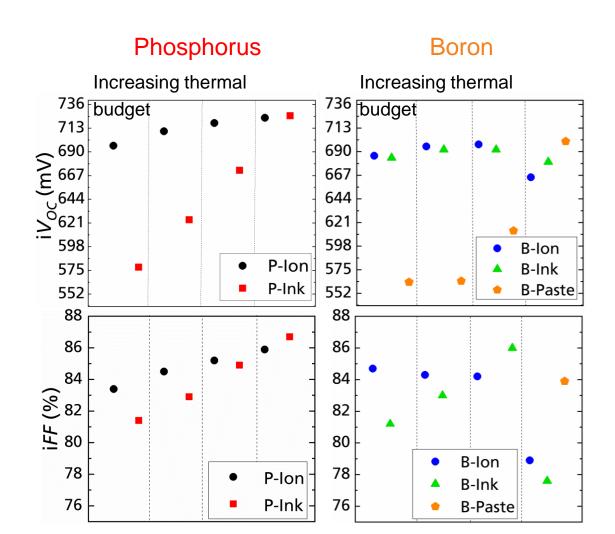
- Testing of Ag and AgAl pastes for p⁺⁺ and n⁺⁺ doping
 - Ag paste with and without "Fire-Through" properties
- Ag contacts on (planar) surfaces with *p*⁺⁺ doping
 - AgAI: 1.3 mΩ / cm²
 - Ag (FT): 1.2 mΩ / cm²
 - Ag (NFT): 2.6 mΩ / cm² (w/ LCO)
- Contact resistivity on n⁺⁺ doping much lower
- Developed layout for half cell interconnection and 24 wires

Implementation of different process modules into baseline

Destruction of baseline due to PV-TEC fire (2017)

	Area (cm²) (n	j _{sc} nA/cm²)	V _{OC} (mV)	FF (%)	η (%)		Junction Formation (4
Co-Diffusion PECVD PSG, BSG	4	40.8	664	78.0	21.1 *		
Co-Diffusion PECVD PSG + printed BSG	4	40.2	659	77.7	20.6 *		
Co-Diffusion POCl ₃ + printed BSG + etch- back	4	40.2	634	74.4	19.0	Very precise printing	Surface Passivation (5
Co-Diffusion POCl ₃ + printed BSG + etch- back	4	40.5	614	71.4	17.8 ◊	accuracy necessary	Metallization (2 ste
All screen printed + etch-back	4			66.1 by Fraunhofe te laboratory a			

Preparation (3 steps)


Back-Contact Back-Junction Silicon Solar Cells

TOPCon-IBC with printed dopant sources

- Tested printed dopants on (i) a-Si
- Annealing at different conditions
- iVoc of doped poly-Si can reach similar level as ion implantation

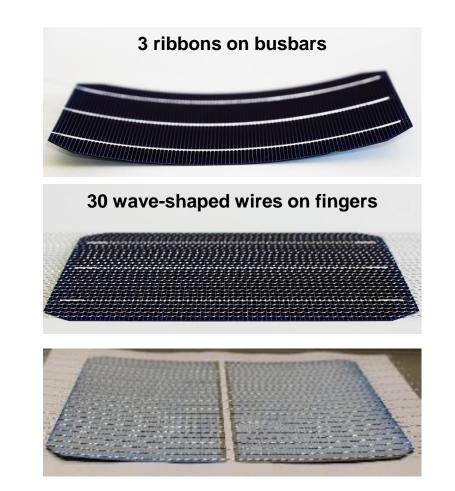
Dopant Source	i <i>V</i> _{oc} (mV)	i <i>FF</i> (%)			
P-lon*	732	87.3			
P-Ink*	733	86.4			
B-lon	698	84.3			
B-Ink	692	83.2			
B-Paste	700	83.9			
*Results after RPHP					

*Results after RPHP

Kiaee et al., EUPVSEC, 2018.

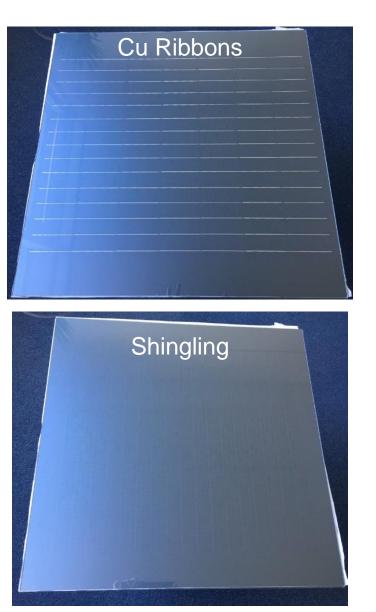
FHG-SK: ISE-INTERNAL

Back-Contact Applications Integrated PV



FHG-SK: ISE-INTERNAL

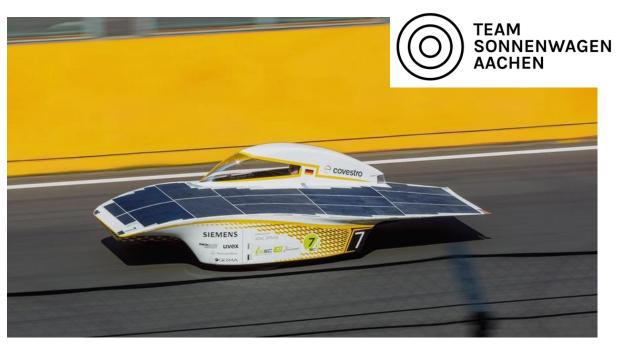
Wire interconnection for IBC No bow due to super soft wires


Super Soft Wires

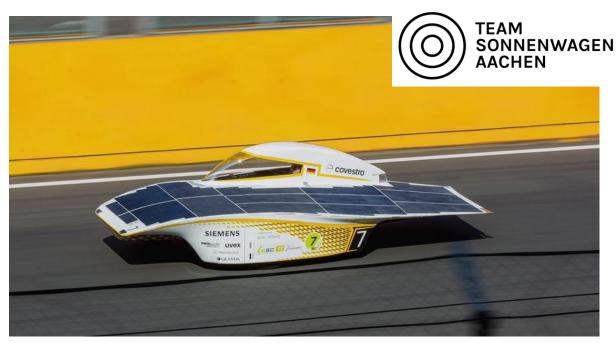
- Developed manufacturing and interconnection process for "super soft wires"
- Wires are wave shaped
 - Reduced stress after soldering process
- Especially useful for back-contact solar cells
 - Demonstrated for BCBJ and MWT

- Small sized demo modules
- Different cell interconnection
- Laminates with MorphoColor®

- Supreme architectural options: MorphoColor® coating and low reflective PV components (*i.e.* black)
- BIPV market in Germany
 - Roofs and facade: 37 700 km²
 - Economic potential: 1400 4400 GWp (22 % facade)



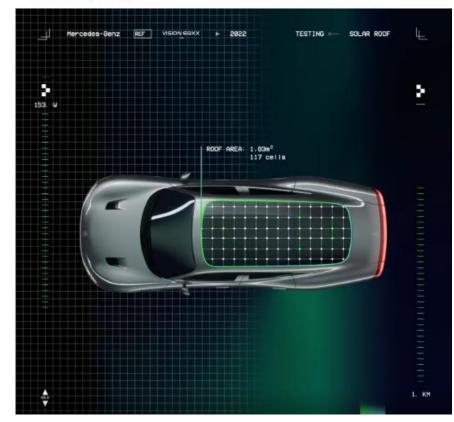
Wirth et al., 36. PV-Symposium, 2021.


- Solar car roofs (Solar challenge)
- 3-10 km / day for EV (today)
- Technical Potential for VIPV in Germany:
 - 25.5 GWp and more (higher integration)

Wirth et al., 36. PV-Symposium, 2021.

- Solar car roofs (Solar challenge)
- 3-10 km / day for EV (today)
- Technical Potential for VIPV in Germany:
 - 25.5 GWp and more (higher integration)

Wirth et al., 36. PV-Symposium, 2021.

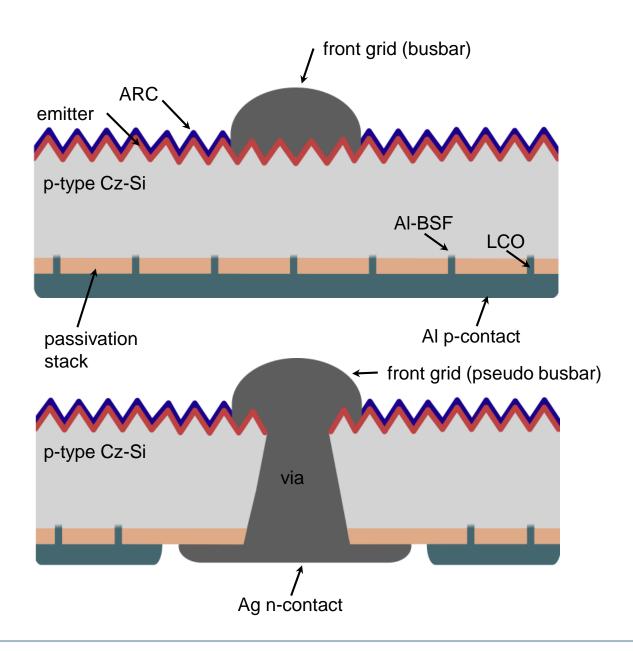

Ola Källenius in • 3.+ Vorstandsvorsitzender von Mercedes-Benz 1 Monat • Bearbeitet • 🕤

+ Folgen

We are currently intensifying the real-world testing of our #VISIONEQXX to see what the most efficient Mercedes ever built - with a drag coefficient of just 0.17 can really deliver on the road.

It uses #renewable #energy from the sun to go even further: 117 individual solar cells on the roof turn the vehicle into a solar power plant in its own right, feeding the battery with up to 25 kilometres of extra range.

Übersetzung anzeigen



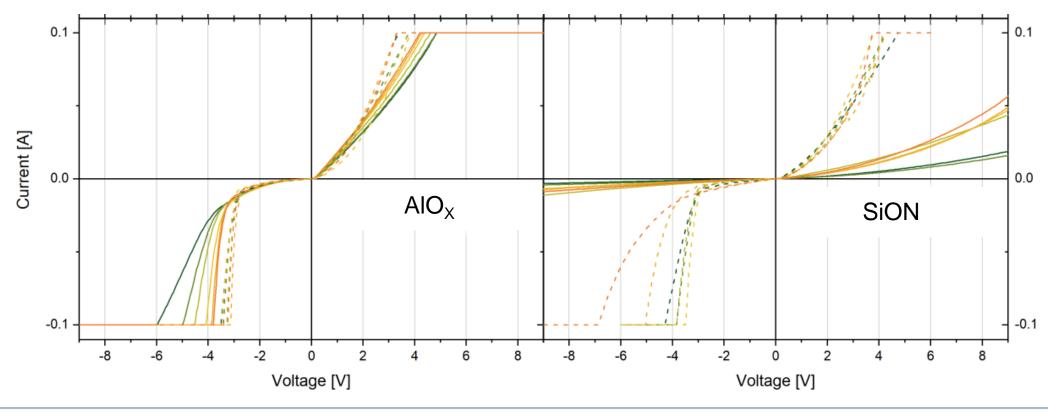
Metal Wrap Through Solar Cells Based on PERC Front-End Processing

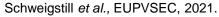
- Improved front side light absorption
- One sided interconnection, tighter spacing
- Fully compatible to standard PERC front-end
 - Using an industrial precursor

Area	j _{sc}	V _{OC}	FF	η
(cm²)	(mA/cm²)	(mV)	(%)	(%)
244	40.2	674	79.2	21.4

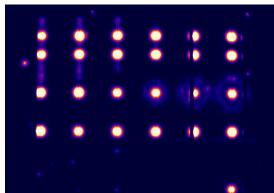
- Layout adaptable to applications ("all-purpose MWT")
 - Adjustments only in back-end
 - Flexible product size, wafer based processing

Schweigstill et al., EUPVSEC, 2021.

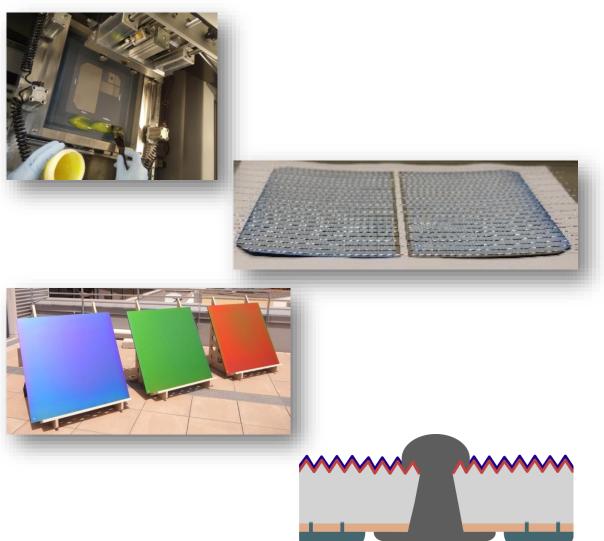

FHG-SK: ISE-INTERNAL



Metal Wrap Through Solar Cells Based on PERC Front-End Processing


- Soft breakdown in reverse bias with charged dielectric
 - Breakdown on n-contact pad

Solid line: with dielectric Dashed line: with dielectric removed



Back-contact solar cells at Fraunhofer ISE Summary

- Demonstrated a very lean process flow: "All screen-printed BCBJ"
 - Challenges remain in alignment accuracy
 - Optimization of processes to improve performance
 - Simulated potential of up to 23 % (without pass. contacts)
- Super soft wires for one-sided interconnection
 - Avoiding bow after soldering
- Back-contact a supreme choice for Integrated PV
 - Increased output on smaller areas (cell performance, spacing)
 - Very appealing aesthetics, combination with color coatings
- MWT process compatible to state-of-the-art PERC
 - Keep some advantages of BCBJ
 - Very lean process flow
 - Easily adjustable for different applications in back-end

Contact

Dr. Jonas D. Huyeng Geschäftsbereich Photovoltaik Tel. +49 761 4588 5045 jonas.huyeng@ise.fraunhofer.de