

anticipate tomorrow

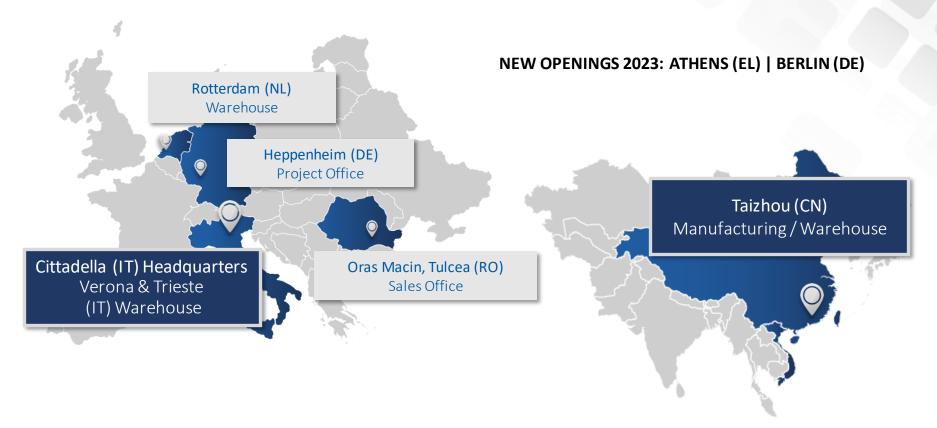
IBC ZEBRA module GigaFactory in Italy

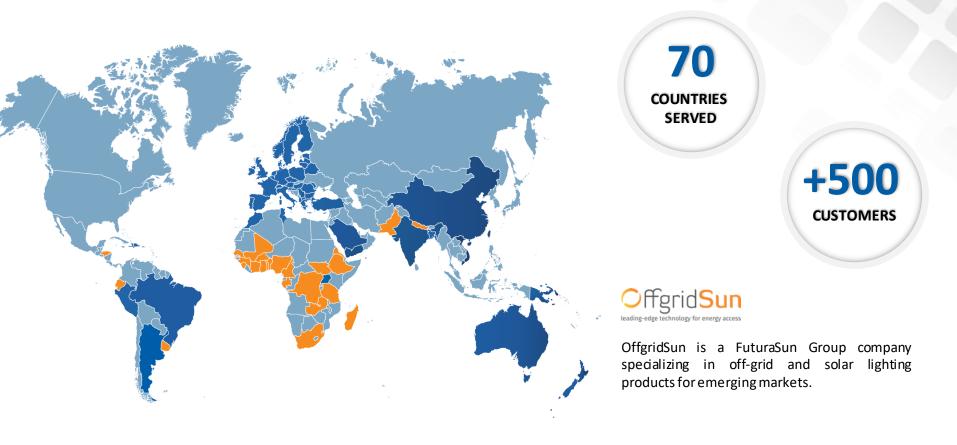
Presented by Lisa Hirvonen November 22 - 2022

The Company

- It's an Italian company specialized in the manufacturing and sale of PV modules
- FuturaSun is the only Italian module manufacturer with exclusive property of its own factory in China

1 GW PRODUCTION CAPACITY




Locations Worldwide

FuturaSun in the World

The Company

- 2 production plants situated in Taizhou, with an annual production capacity of 1 GW
- The highly automated production lines can process PV cells up to 210 mm half/third-cut multi-busbar

www.futurasun.com

Back to the origins

The very first solar cell made of silicon was an n-type back contact solar cell and it was fabricated at the Bell Labs, USA, in 1954. We are now returning to the origins of using N-type wafers to benefit the several advantages that this technology has to offer.

The New York Times - April 25 th 1954

"may mark the beginning of a new era, leading eventually to the realization of one of mankind's most cherished dreams-the harnessing of the almost limitless energy of the sun for the uses of civilization."

N-Type technology

Differences P-Type Vs. N-Type

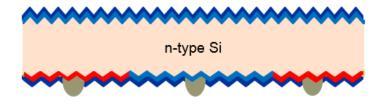
P-TYPE (POSITIVE BASE)

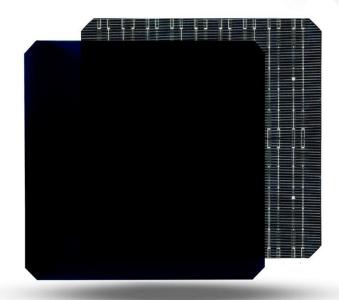
Р-Туре

- Doped with boron or gallium
- One electron less making it positively charged
- Suffers from LeTID and LID if boron doped
- Higher degradation rates over time

N-TYPE (NEGATIVE BASE)

- Is doped with phosphorus
- With one electron more making it negatively charged
- This extra electron is boosting the efficiency
- Resistant to LID and LeTID
- Low temperature coefficient
- More kWh per kWp
- A sustainable choice for your business plan




IBC cells

- Innovative technology developed in Europe by ISC Konstanz

- Industry leading cell efficiency: +24%
- Based on M6 (166 x 166 mm) N-TYPE Cz-Si wafers

ZEBRA Pro series

132 half-cut cells

This new high-efficiency module stands out for its IBC technology with all electrical contacts on the back.

- No metallization on front side
- N+ and P+ doping on the rear
- Maximum light absorption
- Bifaciality

ZEBRA Pro series

Total Black | FU415-FU425M

- Available also with an elegant totally black design

- Particularly suitable for buildings with a high architectural value

Improve your yield with ZEBRA

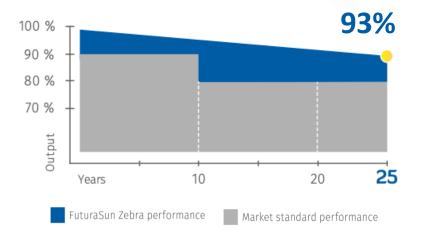
- Resistant to LID and LeTID
- Market leading power stability over time (93% at the end of the 25th year)
- Improved low light performance
- Better yield at various tilts
- No shading on the cell
- Improved behavior under partial shading
- Excellent temperature coefficient of -0,29 % / C°
- ZEBRA cells do not degrade under UV illumination
- Bifaciality

13

ZEBRA Pro

Warranties

Max power decrease 0.25%/year


1st year degradation < 1,0%

99% at the end of first year

 $93\,\%$ at the end of $25^{th}\,year$

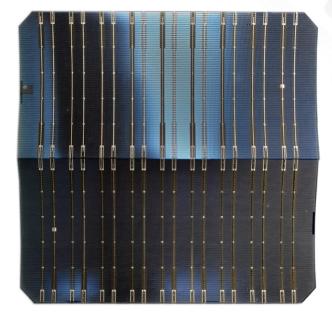
Product guarantee 25 years

ZEBRA Pro

Summary

- Perfection in aesthetic design
- Superior energy performance
- More kWh per kWp
- Reliability & Availability
- Competitive cost compared to other high-end panels

SAY IBC THINK ZEBRA



Interconnection by «traditional» stringing Traditional manufacturing process regarding the module assembly

9 bb becomes 18 bb

DIFFICULTIES WITH A STANDARD TECHNOLOGY FOR ZEBRA CELLS

- Soldering of only the back side tends to create a notable bending of the cell due to the thermal return of the ribbon;
- This problem exists also on normal cells but as both sides are soldered the consequences are less noted;
- The mechanical tensions, either if connected on both sides or on one side only, remain active during the module's lifetime and could create, in severe cases, quality problems

ZEBRA Pro series

Standard Cell interconnection

Development of a FuturaSun stringer machine to simplify the soldering of MBB standard cells

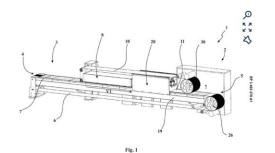
Patent EP3493278B1

OUR PATENT IN A STANDARD SOLUTION

- Two conveyor belts are mated together encapsulating the cells and the ribbon still to be soldered;

- Vacuum is created between the two belts and atmosperic pressure keeps the belts on the entire cell surface;

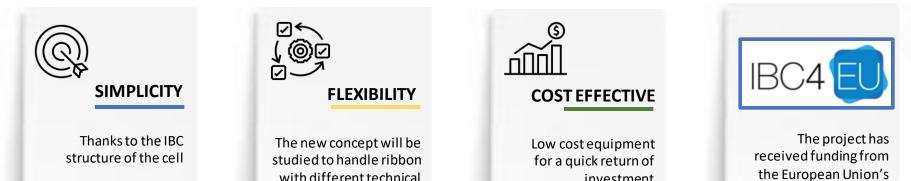
- Induction heating brings the coating of the ribbon to its melting point and the soldering of the string is performed;





THE NEW ZEBRA STRINGING CONCEPT

- The cells and the ribbon will be distributed on the principal conveyor;
- The concept of the patented solution will be maintained;
- During the forward movement of the soldering system the mated belts will be curved mechanically;
- The created curve is studied to be the opposite of the curve created during soldering;
- The soldered string exits from the mated belts without curving and without mechanical tension



with different technical

specifications, cell sizes and metallizations

(silver free)

THE NEW ZEBRA STRINGING CONCEPT - KEY POINTS

investment

Horizon programme

Grant agreement No.

101084259

FuturaSun

Company vision

What's cooking

THE PAST

- Europe was the main player in the development of the photovoltaic industry in terms of R&D and supply chain
- Europe had a strongly incentivized market for the end user
- Quick spreading of the photovoltaic culture as a sustainable and profitable energy choice

Company vision

What's cooking

BUT WHAT HAPPENED IN LESS THAN A DECADE?

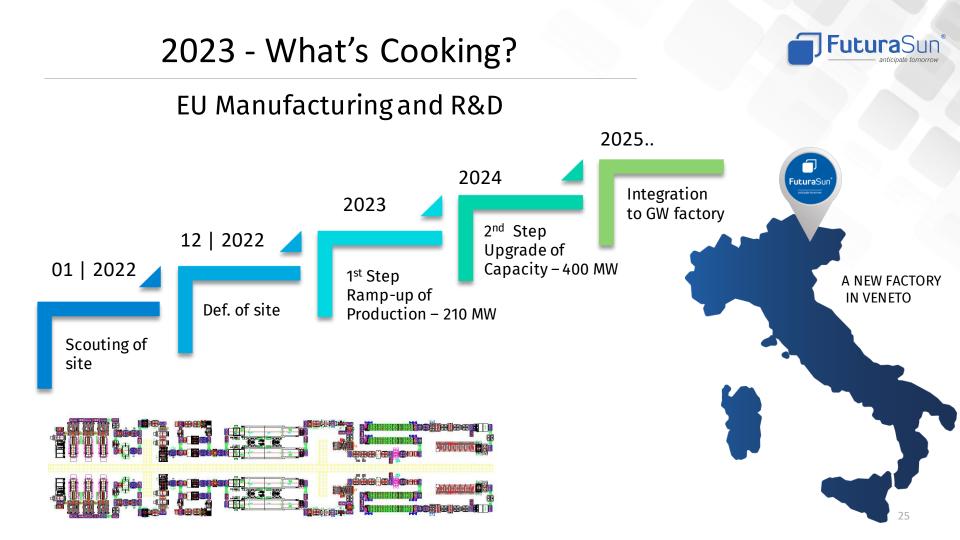
BOOM \rightarrow MATERIAL SHORTAGE \rightarrow ASIAN SUPPLY CHAIN GROWTH \rightarrow OVER CAPACITY \rightarrow PLUMMETING PRICES \rightarrow END OF TARIFFS \rightarrow

WHAT WENT WRONG FOR EUROPE ?

A strongly stimulated market but without adequate support for the industries present in Europe.

Company vision

What's cooking


THE PRESENT

Today, like never before, energy independence has been this important and with photovoltaics now proven to play a key role for the European energy needs it is now strategic for Europe to restore the photovoltaic supply chain.

OUR CONTRIBUTION

European ZEBRAs

FuturaSun®

anticipate tomorrow

FuturaSun srl Riva del Pasubio, 14 35013 Cittadella (PD) – Italy Tel 049 5979802 www.futurasun.com

Thank you for your attention

Contact

Lisa Hirvonen <u>I.hirvonen@futurasun.it</u> | +39 347 225 7707

SAY IBC THINK ZEBRA