

Jonas D. Huyeng, Christian Reichel, Ralph Müller, Andreas Fell, Roman Keding, Florian Clement, Martin Hermle, Stefan W. Glunz

10th BCworkshop, 21.11.2022, Konstanz

Solar Cell Research at Fraunhofer ISE

Research for the Energy Transition (over 40 years)

BCworkshop since 2009

1st Workshop on MWT technology, 2009, Freiburg (w/ ECN)

Applied Research on Solar Technology

- Business Area Photovoltaics: ca. 700 employees (incl. students)
- CalLab PV Cells Calibrated Measurements

CalLab PV Cells

Measurement of Back Contact Cells

Compatible with cell formats up to M12

No front glass

- Electrical and thermal contact by vacuum suction
- Tactile measurement of solar cell temperature possible
- Irradiance not affected

Separate current and voltage contacts

- Very narrow contact structures feasible (minimum structure size of ca. 500 µm)
- Busbar and point-like contact structure

CalLab PV Cells

Measurement of Back Contact Cells

Compatible with cell formats up to M12

No front glass

- Electrical and thermal contact by vacuum suction
- Tactile measurement of solar cell temperature possible
- Irradiance not affected

Separate current and voltage contacts

- Very narrow contact structures feasible (minimum structure size of ca. 500 µm)
- Busbar and point-like contact structure

High temperature uniformity

- Temperature variation \pm 0.8 K
- Measurement of temperature coefficients

CalLab

PV Cells

CalLab PV Cells

<u>cells@</u>callab.de

CalLab PV Cells

Measurement of Back Contact Cells

Compatible with cell formats up to M12

No front glass

- Electrical and thermal contact by vacuum suction
- Tactile measurement of solar cell temperature possible
- Irradiance not affected

Separate current and voltage contacts

- Very narrow contact structures feasible (minimum structure size of ca. 500 µm)
- Busbar and point-like contact structure

High temperature uniformity

- Temperature variation ± 0.8 K
- Measurement of temperature coefficients

High potential uniformity

➔ Simple and cost-effective customization for customers

Solar Cell Research at Fraunhofer ISE

Research for the Energy Transition (over 40 years)

BCworkshop since 2009

1st Workshop on MWT technology, 2009, Freiburg (w/ ECN)

Applied Research on Solar Technology

- Business Area Photovoltaics: ca. 700 employees (incl. students)
- CalLab PV Cells Calibrated Measurements
- Center for Highest Efficiency Solar Cells (ZhS 2021)
- Photovoltaic Technology Evaluation Center (PV-TEC)
 - Front-End: 1000 m²
 - Back-End: 1230 m²

Industrial Silicon Solar Cells on Pilot Lines

- Passivated Emitter and Rear Cells (PERC)
- Tunnel-oxide Passivated Contact Cells (TOPCon)
- Silicon Heterojunction Cells (SHJ)
- Interdigitated Back-Contact Cells (IBC)*
 - Metal-Wrap Through (MWT)
 - Back-Contact Back-Junction (BCBJ)

* J. D. Huyeng et al., 9th BCworkshop: https://www.backcontact-workshop.com/pdf/2022-1/4_ISE.pdf

Interdigitated Back-Contact Solar Cells

Back-Contact Back-Junction Architecture

Schematic

Current Collection in IBC Solar Cells

Lateral Transport of (Minority) Charge Carriers

Schematic (*n*-type IBC)

Current Collection in IBC Solar Cells

Lateral Transport of (Minority) Charge Carriers

Schematic (*n*-type IBC)

Typical dimensions

- Wafer thickness $t \sim 160 \ \mu m$
- BSF widths $W_{n++} \sim 300 \,\mu m$
- Gap widths $W_{gap} \sim 150 \,\mu m$
- Emitter widths $W_{p++} \sim 1600 \, \mu m$

The Buried Emitter and Floating Base Concepts

Schematic (*n*-type IBC)

The Buried Emitter and Floating Base Concepts

Schematic (*n*-type IBC)

[1] Harder, N.-P.; Mertens, V.; Brendel, R. (2008), Phys. Status Solidi RRL 2 (4), S. 148–150. DOI: 10.1002/pssr.200802113.

The Buried Emitter and Floating Base Concepts

Schematic (*n*-type IBC)

[1] Harder, N.-P.; Mertens, V.; Brendel, R. (2008), Phys. Status Solidi RRL 2 (4), S. 148–150. DOI: 10.1002/pssr.200802113.

The Buried Emitter and Floating Base Concepts

Schematic (*n*-type IBC)

"Floating Base"

[1] Harder, N.-P.; Mertens, V.; Brendel, R. (2008), Phys. Status Solidi RRL 2 (4), S. 148–150. DOI: 10.1002/pssr.200802113.

[2] Reichel, C.; Fell, A.; Hermle, M.; Glunz, S. W. (2019): Phys. Status Solidi A 216 (4), S. 1800791. DOI: 10.1002/pssa.201800791.

Fabrication of Buried Emitters and Floating Base

Process technology

- (Masked) diffusion of B Emitter doping
 - Deep diffusions (green)
- Masked diffusions of P BSF doping
 - Shallow diffusion (red)
 - Overcompensation of B near surface (filled)
- Full contact of B and P diffusion
 - Additional vertical junction (n⁺⁺-p⁺⁺-n, s. right)
 - Lateral "high-high" junction

Experimental approach²

- Pitch distance: $I_{\text{pitch}} = 1100 \,\mu\text{m}$
- Reference (gaps): $W_{p++} = 800 \ \mu m$, $W_{n++} = 150 \ \mu m$
- Buried Emitter: $w_{p++} = 1050 \ \mu m$, $w_{n++} = 550 \ \mu m$
- Floating Base: $w_{p++} = 1100 \ \mu m$, $w_{n++} = 550 \ \mu m$

Buried Emitters in the Transition Region

Buried Emitters in the Transition Region

 $I_{\rm pitch} = 1100 \ \mu {\rm m}$

Buried Emitters in the Transition Region

Recombination in IBC solar cells

- Bulk recombination (intrinsic)
- Surface recombination
- Non-ideal recombination (junctions)
 - Vertical* and lateral junction contacts (transition region)

Schematic (*n*-type IBC)

* More possibly later today ...

Harder, N.-P.; Mertens, V.; Brendel, R. (2008), *Phys. Status Solidi RRL* 2 (4), S. 148–150. DOI: 10.1002/pssr.200802113.
 Reichel, C.; Fell, A.; Hermle, M.; Glunz, S. W. (2019): *Phys. Status Solidi* A 216 (4), S. 1800791. DOI: 10.1002/pssa.201800791.

Buried Emitters in the Transition Region Gapless Cells

Recombination in IBC solar cells

- Bulk recombination (intrinsic)
- Surface recombination
- Non-ideal recombination (junctions)
 - Vertical* and lateral junction contacts (transition region)

"Gapless" IBC solar cells

- Only lateral junction contact
 - If solar cell is truly gapless, *i.e.*, without etched steps
- More simple fabrication

Schematic (*n*-type IBC)

* More possibly later today ...

Harder, N.-P.; Mertens, V.; Brendel, R. (2008), *Phys. Status Solidi RRL* 2 (4), S. 148–150. DOI: 10.1002/pssr.200802113.
 Reichel, C.; Fell, A.; Hermle, M.; Glunz, S. W. (2019): *Phys. Status Solidi* A 216 (4), S. 1800791. DOI: 10.1002/pssa.201800791.

Eliminating the Transition Region

Gapless IBC Solar Cells

Reference (Gaps) "P-Blocking"¹ "Co-Diffusion"² Cleaning, Texturing, ... Masked P Ion Implantation Mask for *p*⁺⁺ Print multifunction B layer (Mask for n^{++}) (*n*⁺⁺ Definition) B diffusion (Masked) P implantation P diffusion Mask removal FS Etch Back (Mask removal) **B** diffusion Mask for *n*++ **BBr3** Furnace Diffusion Mask removal $(p^{++} \text{ front and rear})$ P diffusion \Rightarrow Local Blocking by P Mask for n^+ (FS) P diffusion Mask removal Cleaning Cleaning, Passivation, Metallization, ... \Rightarrow Truly "gapless"

Simplified IBC Process Sequence

Müller, R.; Reichel, C.; Schrof, J.; Padilla, M.; et al. (2015): Sol. Energy Mater. Sol. Cells 142, S. 54–59. DOI: 10.1016/j.solmat.2015.05.046.
 Huyeng, J. D.; Efinger, R.; Keding, R. J.; Doll, O.; Clement, F. (2020): Sol. RRL 4 (10), S. 2000271. DOI: 10.1002/solr.202000271.

P-Blocking by Ion Implantation

Eliminating the Transition Region

Simplified IBC sequence by P-Blocking

"Gapless" IBC solar cells

- Simple process sequence, e.g., by P-Blocking
- Lateral recombination noticeable in reverse bias¹
 - Soft breakdown due to lateral junction ("high-high")
 - May influence charged dielectric (e.g., $AI_2O_3)^2$
- BSF widths limits emitter coverage
 - "Electrical shading" due to h⁺ loss

Müller, R.; Reichel, C.; Schrof, J.; Padilla, M.; et al. (2015): Sol. Energy Mater. Sol. Cells 142, S. 54–59. DOI: 10.1016/j.solmat.2015.05.046.
 Müller, R.; Reichel, C.; Yang, X.; Richter, A.; Benick, J.; Hermle, M. (2017): Energy Proced. 124, S. 365–370. DOI: 10.1016/j.egypro.2017.09.311.

Eliminating the Transition Region

Occurrence of "Electrical shading" in IBC Solar Cells

2D-Simulation using "SARAH" (Diffusion Resistance)³:

[1] W. P. Mulligan and R. M. Swanson, Proceedings of the 13th NREL Crystalline Silicon Workshop, Vail, Colorado, USA, 2003, pp. 30–37

[2] Reichel, C.; Granek, F.; Hermle, M.; Glunz, Stefan W. (2011): J. Appl. Phys. 109 (2), S. 24507. DOI: 10.1063/1.3524506. [3] Saint-Cast, P.; Padilla, M.; Kimmerle, A.; and Reichel, C. (2014): IEEE Journal of Photovoltaics 4(1), pp. 114–121. DOI: 10.1109/jphotov.2013.2287771

💹 Fraunhofer

Gapless IBC Solar Cells

Realization of Multi-Parameter Simulation to optimize "Co-Diffused All-Screen-Printed IBC"¹

[1] Huyeng, J.D., PhD thesis, 2020. DOI: 10.6094/UNIFR/223536

Next Generation: Implementing Passivating Contacts TOPCon-IBC Solar Cells¹

Schematic

Surface Passivation

[1] Reichel, C.; Müller, R.; Feldmann, F.; Richter, A.; Hermle, M.; Glunz, S. W. (2017): J. Appl. Phys. 122 (18), S. 184502. DOI: 10.1063/1.5004331.

[2] Hollemann, C.; Haase, F.; Rienäcker, M.; et al. (2020): Sci Rep **10**, 658. DOI: 10.1038/s41598-019-57310-0.

Lateral Diffusion in poly-Si Films

"pin" vs "pn" Structures – "Nominal" vs. "Realized"

Figures from Hollemann et al.²

[1] Reichel, C.; Müller, R.; Feldmann, F.; Richter, A.; Hermle, M.; Glunz, S. W. (2017): J. Appl. Phys. 122 (18), S. 184502. DOI: 10.1063/1.5004331.

- Lateral "pn-junctions" much more problematic for poly-poly contacts³⁻⁵, other than for doped c-Si (s. above)
- Implementation of trenches into TOPCon-IBC to separate poly-Si¹ or optimization of lateral diffusion²

C)

b)

Influence of the Transition Region Between *n*- and *p*-Doped Silicon on IBC Solar Cells

Several design and process options available for IBC solar cells

- Optimization and simulation of IBC solar cells often require more details than "simple" solar cells
 - Actual cell performance can derivate unexpectedly
 - Transition region between *n* and *p*-doped Silicon:
 Additional lateral and vertical junctions need to be considered
- Gapless solar cells offer significant simplification
 - Process details matter a lot

Next generation: TOPCon-IBC

- Some details change, several fundamentals stay the same
 - Touching poly-poly contacts in the transition region can be severe
- What you see in schematics might tell you even less

BC community

- Many great accomplishments achieved
- Looking forward to results from this workshops

Year of publication

1st BCworkshop (Freiburg)

Contact

Dr. Jonas D. Huyeng Business Area Photovoltaics Tel. +49 761 4588 5045 jonas.huyeng@ise.fraunhofer.de