

Hameln – nice historic city and home of the Pied Piper

Hameln – nice historic city and home of the Pied Piper

Hotel Stadt Hameln

- Build in 1827 as a prison
- Today a nice conference hotel at the Weser and in the city center of Hameln
- Coffee break, lunch and dinner in the hotel restaurant
- Business rooms available

Institute for Solar Energy Research Hamelin (ISFH)

- Founded 1987
- 158 employees
- 12 Mio € revenue
- Focus on applied research in PV and solar systems

- ISFH SolarTeC with industrial type c-Si cell processing tools
- Several more labs for perovskite cell and c-Si module R&D
- ISFH CalTeC for calibrated IV tests

Institute for Solar Energy Research Hamelin (ISFH)

Why IBC now ?

- Is TOPCon efficiency limited to < 26% in production ?
- Will tandem mass production be later than 2025 ?
- If both yes, how to get η > 26% in the next years ?
- => IBC is the solution !

¹ T. Dullweber and J. Schmidt, IEEE Journal of photovoltaics, Vol. 6, No. 5 (September 2016).

³ M. Hermle et al., Appl. Phys. Rev. 7, 021305 (April 2020).

Why IBC now ? No front gid shadowing

Shadowing loss

- Front Ag fingers: ca. 1.5%
- Front MBB wires: ca. 1.5%

No shadowing loss

- ca. 0.3%abs. higher cell efficiency
- ca. 0.5% higher module efficiency
- Wider contacts for AI or Cu tolerable

Why IBC now ? Integration of n+ and p+ poly-Si

- Ag on Boron emitter limits $V_{oc} < 740 \text{ mV}$
- p-poly widths limited to < 50 μm
- Ag print alignment challenging

- p-poly widths limited by IBC pitch to
 < 200 µm
- No problem for print alignment

Why IBC now ? Novel poly-Si structuring technologies

• No poly structuring required

Novel poly-Si structuring technologies available for production

- Laser structuring
- Shadow masks

Why IBC now ? Highest module efficiencies with IBC

TAIYANGNEWS		TaiyangNews Top Modules: Highest Efficient Commercial Solar Modules 11-2023									
Rank	Company	Series	Model	Wafer type	Cell Size	Cells No.	Cell Tech	Module Technology	Power (W)	Efficiency (%)	
1	ΛΙΚΟ	ABC White hole	AIKO-A620-MAH72Mw	n-type	182	144	ABC	Halfcell, back Contact	620	24.0	
z	LONGI	Hi-MO 6	LR5-72HTH-600M	p-type	182	144	HPBC	Halfcell, back Contact	600	23.2	
з		Himalaya	HS-210-B132DS	n-type	210	132	HJT	Bifacial, halfcell, MBB	715	23.02	
4	Maxeon	Maxeon 6	SPR-MAX6-445-E4-AC	n-type		66	IBC	Back Contact	445	23.0	
5	SPIC	ANDROMEDA 3.0	SPICN6(LDF)-60/BIH	n-type	166	120	TBC	Backcontact, halfcell, MBB	410	22.8	
6	JinKo	Tiger Neo	JKM585N-72HL4-V	n-type		144	TOPCon	Halfcell, MBB	585	22.65	
7		Astro N5	CHSM72N(DG)/F-BH	n-type	182	144	TOPCon	Bifacial, Halfcell, MBB	585	22.6	
8	(B PARBO	Niwa Pro	JW-HD108N	n-type	182	108	TOPCon	Bifacial, Halfcell, MBB	440	22.53	

- Of top 5 highest-efficient commercial PV modules, 4 use IBC technology
- Ca. 0.5%_{abs.} higher module efficiency for IBC compared to TOPCon

Day 1

09:00	Conference opening				
09:20 –	Session 1: Back contact				
10:40	cells & modules in R&D				
11:20 -	Session 2: Back contact				
13:00	cells in industry				
	Lunch				
14:30 -	Session 3: Materials &				
15:50	tools for bc cell technology				
16:20 -	Session 4: Characterisation				
17:20	/ Quality / Standards				
	Christmas Market				
19:00	Dinner				

Day 2

09:00 - 10:40	Session 5: Back contact modules & materials
11:20 – 12:00	Session 6: Panel discussion
	Lunch
13:30 - 14:30	Session 7: Back contact technology users
14:30 - 15:00	Closing session

Thanks for support of the Organising Committee !

Thorsten Dullweber ISFH Radovan Kopecek ISC Olindo Isabella TU Delft

Jonas Huyeng ISE Iris Krucker PSE

The art of wet processing.

