

3D lamination for flexible manufacturing of variously curved PV modules

W. Wirtz¹, J. Eilrich¹, A. Morlier^{1,2}, S. Bräunig¹, S. Blankemeyer¹, H. Schulte-Huxel¹

¹Institute for Solar Energy Research Hamelin (ISFH), Germany ²now with Interuniversity Microelectronics Center (imec), Belgium

PV potential of electric passenger cars

- Increase annual driving range with vehicleintegrated PV (VIPV)
- Potential solar range is ca. 5000 km per year for roof, hood and trunk [1]
- IBC cells advantageous for VIPV due to:
 - High efficiencies [2,3]
 - Thin modules due to one-sided and foilbased interconnection [4]
 - Aesthetic appearance [5]
- Challenge: 3D-shaped substrates

ISFH

[1] M. Heinrich et al., 37th EUPVSEC, 2020

- [2] F. Haase et al., Sol. Energy Mater. Sol. Cells, vol. 186, pp. 184-193, 2018
- [3] K. Yoshikawa et al., Nat. Energy 2, 17032, 2017

[4] H. Schulte-Huxel et al., IEEE Journal of Photovoltaics, vol. 3, no. 1, pp. 77–82, 2013

[5] J.C. Ortiz Lizcano et al., Progress in Photovoltaics Vol. 30, pp.401-435, 2022

VIPV module layout

- Substrate: passenger car hood
- Matrix of 4x9 half-cut IBC cells
- Both contacts fed through one hole
- Electrical isolation by substrate primer and double layer of encapsulant

Challenges for lamination of 3D-shaped modules

heating plate

• Evacuated space between flat heating plate and curved module stack hinders heat transfer

 Module substrate could be deformed due to membrane pressure

• Specific mold for every module shape required

Flexible Heat Transfer Mold

- Heat transfer cushions as flexible heat transfer mold (FlexHTM) [1,2]
- Cushions made from heat resistant textiles or polymer foils and filled with aluminum granulate
- Applicable in standard vacuum lamination processes

[1] J. Eilrich, A. Morlier, patent number DE 10 2022 104 261 B3[2] W. Wirtz et al., 40th EUPVSEC, 2023

Passenger car hood cutout

- 0.7 m² with 8 cm height difference
- Encapsulant melted evenly on whole area
- Electrical insulation works
- No cell cracks after lamination observable in electroluminescence image
- Successful lamination of PV module on curved metal substrate

Passenger car hood for automotive vibration test

before vibration test

after vibration test

- Heat transfer cushions avoid deformation of the steel substrate during lamination
- No mechanical or electrical degradation after 24h automotive vibration test [1,2]

 Markert et al., Sustainability 2021, 13, 13341
"Road vehicles – Environmental conditions and testing for electrical and electronic equipment – Part 3: Mechanical loads", ISO/FDIS 16750-3:2007

Aesthetically appealing VIPV module

- Reuse of flexible heat transfer mold
- Uniform bluish-black appearance due to IBC cells on black hood and scattering encapsulant
- No additional coloring layer needed
- Cross connectors hidden behind dummy cells

Demonstrator VIPV modules from passenger car hoods

Module	A [m²]	A _{active} [m ²]	I _{sc} [A]	V _{oc} [V]	FF [%]	P _{mpp} [W]	η _{active} [%]
Cutout	0.70	0.46	4.9	24.8	79.3	95.5	20.8
Grey	1.13	0.46	4.9	24.8	80.1	97.8	21.3
Black	1.13	0.46	4.9	24.7	80.6	97.6	21.3

Summary

- 3D lamination with flexible heat transfer mold
- Successful lamination of VIPV modules from passenger car hoods and IBC cells
- Crack-free lamination
- Automotive vibration test passed
- Aesthetically appealing

Acknowledgments

This work was funded by the European Union's Horizon 2020 Programme for research, technological development and demonstration under Grant Agreement no. 857793 (HighLite) and the state of Lower Saxony.

Thank you for your attention!

Contact: Wiebke Wirtz, <u>wirtz@isfh.de</u>

