

p-type TBC cell and module pilot running in Tongwei

Xiajie Meng Tongwei Solar(Chengdu) Ltd.

2023/11/29

Evolution of high efficiency c-Si solar cell

Development of p-TBC solar cells

Development of p-TBC modules

04 Pr

01

02

03

Products and Prospects

CONTENTS

Evolution of solar cell structure towards Back Contact

Comparison of TOPCon and p-TBC to PERC Finally, They reached similar Voc and Module Power

	Non-ideal efficiency loss	Extra production cost @M10 size	Module performance
n-TOPCon	Boron Diffusion Junction Recombination	 Ag consumption@100mg M10 Electricity bill of >1000°C Boron Juction formation 	585W High bifaciality
Voc=730mV			
p-TBC	Contact recombination and resistence of Al-Si BSF	 Ag consumption@80mg M10 Strict wet chemicals standard Packaging papers of cells Lower class A yield 	585W Excellent aesthetics (Low bifaciality)

Industrial Processes of TOPCon and p-TBC

- TOPCon cells in mass production have achieved open circuit voltage (V_{oc}) of 730 mV, owing to the successful implementation of boron diffusion, laser induced boron doping, LP/PE polySi deposition and intense light assisted refire.
- p-TBC loses > 1% efficiency due to recombination caused by AI-BSF.
- No room for further improvement on passivation quality.
- Only if upgrade the cell to bi-polar polySi passivated contact.
- Eventually TOPCon and p-TBC have achieved identical $V_{\rm oc}$

(730mV) and module power (585W@M10-72module)

Typical IV data of p-TBC (M10)

Batch (2023.9.11)	Quantity (PCS)	Eff (%)	Max Eff (%)	Voc (V)	lsc (A)	Jsc_ (A/cm2)	FF (%)	Rsh (Ω)	Rs_ (Ω- cm2)	RserLfDf IEC	lrev2 (A)	SunsV oc_FF (%)	Jo1_ (fA/c m2)	Jo2 (nA/ cm2)	pFF (%)	Yield (%)
RUN247	3362	25.24	25.62	0.7297	14.031*	42.14*	82.11	1660	0.56	0.0017	0.75	84.58	19.6	-0.1	84.75	/

* Jsc Internally measured, defined and tracked from module power according TUV certification.
 * A

Batch (2023.9.11)	Max hot spot Temp Diff. (°C)	Quantity	Ratio	Bias	Batch (2023.9.11)	Binning by Irev2	Quantity	Ratio
1	<5	3387	99.7%		1	<0.5A	2013	59.0%
2	5~7	4	0.1%		2	0.5-1A	479	14.1%
3	7~10	3	0.1%	-13V	3	1-3A	794	23.3%
4	>10	2	0.1%		4	>3A	123	3.6%

Hot spot on p-TBC cells

Hot spot is the red-line for module reliability

- For p-TBC cells with low leakage current, the hot spot temperature and knee-point current of the module is similar to those of a PERC module with the same configuration.
- The shading fraction of individual cell when bypass diodes activated are higher than shading fraction of PERC modules.

Purpose	lrev2	Efficiency loss due to hot spot	Hot spot temperature (°C)	Average diode knee point current (A)	Shading Fraction individual cell when bypass diodes activated	
	< 0.5A	0.16%/-0.4%	153.9	8.41	30%	
Investigating hot spot effect under different leakage current (182-72 module)	0.5-1A	-1.32%	157.4	8.86	48%	
	1-3A	-0.88%	159.0	9.27	55%	
	> 3A	-0.53%/-0.65%	157.1	7.07	20%	
PERC modules as reference (182-72 module)	<0.5A	N.A.	155.8	6.96	8%	

Hot spot temperature increases linearly with leakage current density

J_{leakage}: leakage current density, I_{leakage}: leakage current, A_{hot-spot}:

total area of current leakage region

Figure 6: Correlation between the hot spot size and the hot spot temperature.

Hot spot temperature increases linearly with leakage current density. The higher J_{leakage} gets, the higher the hot spot temperature becomes

Wendlandt S, Drobisch A, Buseth T, et al. Hot spot risk analysis on silicon cell modules[C]//25th European Photovoltaic Solar Energy Conference and Exhibition. Valencia, Spain, 2010: 4002-4006.

Leakage current densities of PERC and p-TBC cells

Comparison of single cells:

- At 182 mm cell size, -13V bias, the p-TBC sample has a leakage current (I_{leakage}) of 2A while PERC samples has an I_{leakage} of 0.18A:
- When leakage current is at 2A, the p-TBC cell has lower J_{leakage} (leakage current density) than that of the PERC cell; Despite of this, p-TBC cells still have limited tolerance for leakage current.

When leakage current is greater than10A, an alternative solution for HOTSPOT is required.

- The leakage current of TBC cells is uniform across the entire cell.
- Mass produced TBC cells have larger leakage current than mass produced PERC cells

Instability of p-TBC cell efficiency

Halm

1000W/m2

2s

--Repeated I-V tests

Under exposure to flashing during repeated I-V tests, p-TBC cell efficiency temporarily increases until a plateau due to the limit by passivation

Xiajie Meng et al, presented in SiliconPV 2023

Equipment manufacturer:

Interval between tests:

Luminance:

Instability of p-TBC cell efficiency

Cell efficiencies increase after exposure to repeated flashing (200 times), but drops when stored in dark overnight Possible causes:

FeGa decomposition in p-type silicon wafers⁽¹⁾; passivation quality of AIOx improves when exposed to repeated flashing⁽³⁾

Efficiency Category	Condition	Eff (%)	Voc (V)	lsc (A)	FF (%)	PFF (%)	Rs_ (Ω-cm2)
	Initial	24.06	0.7242	13.934	79.41	84.23	0.83
24.0%	Flash 200 times	24.50 ↑	0.7268	13.994	80.23	84.89	0.74
24.070	Stored for 12 hrs	24.11 💻	0.7251	13.931	79.48	84.18	0.80
	ΔEff	0.44	0.0025	0.060	0.82	0.66	-0.09
	Initial	24.52	0.7247	13.968	80.68	84.94	0.70
24 5%	Flash 200 times	24.99 ↑	0.7261	14.021	81.74	85.74	0.62
24.370	Stored for 12 hrs	24.55 💻	0.7248	13.965	80.77	84.94	0.69
	ΔEff	0.46	0.0014	0.053	1.05	0.80	-0.08
	Initial	25.02	0.7289	14.050	81.34	85.71	0.67
25.0%	Flash 200 times	25.25 ↑	0.7295	14.076	81.86	86.15	0.65
	Stored for 12 hrs	25.05 💻	0.7294	14.047	81.40	85.78	0.65
	ΔEff	0.23	0.0006	0.026	0.52	0.43	-0.02

① Marwan Dhamrin PhDThesis, Fabrication and Evaluation of Ga-doped Multicrystalline Silicon Wafers and Solar Cells

②Nærland T U, Bernardini S, Haug H, et al. On the recombination centers of iron-gallium pairs in Ga-doped silicon[J]. Journal of Applied Physics, 2017, 122(8): 085703.

FeGa affected minority carrier lifetime fitting

	Dopant level (eV)	Et-Ei	Electron capture cross section σn (cm2)	Hole capture cross section σp (cm2)	Ratio of E/H capture cross section σn/σp	References
Fei	Ev+0.38	-0.18	4.00E-14	7.00E-17	571.4	Istratov
FeGa	Ev+0.2	-0.36	1.20E-14	6.00E-15	2.000	Narland

Possible Origins of FeGa in Cells

Origin 1: metal adsorption during the last wet chemical process (1~10ppb)

Iron originated from acid should be strictly controled

Origin 2: Fe segregation in silicon ingots, which forms percipitates that dissolves as Fe reservior during high temperature process in cell fabrication

Iron-Gallium pairs are unavoidable since p/Ga doped ingot pulling feedstock comsuption is over 4000 kg per cruicible

Power instability of p-TBC module

Photo-injection can cause temporary efficiency increase for p-TBC cells, so should current injection

- Current injection can increase module power by 4~11W
- Before current injection, it is hard to predict module power by cell efficiency, due to discrepancies as large as 11W. After current injection, a trend can be established to some extent

Instability of AlO_x passivated p-type wafer surface

• P-type + AlO_x passivated wafer: Carrier lifetime before and after light exposure, as well as in storage (@ 10¹⁵cm⁻³)

(3)Baochen Liao, Rolf Stangl, Thomas Mueller, et al, Journal of Applied Physics 113, 024509 (2013);

Note: Light exposure here means the flashing used in PL test (BT image IR2)

Influence of AIO_x passivation instability on PBC cells ^④通威股份 Quokka3 Simulation

- The evolution from BSF cell to PERC cell is primarily the result of the implementation of AIO_x passivation on ptype Si wafers. Due to its high density of fixed negative charges ($Q_f > 10^{12}/cm^3$), AIO_x can effectively repell electrons, the minority carrier in p-type silicon wafers, thereby reducing surface recombination velocity
- According to literature, exposure to light, especially UV light, may lead to an increase in Q_f for AlO_x, which results in enhanced passivation quality. This effect is demonstrated in the following table:

Influence	e of Fixed C	harge density	of AlO _x o	n PBC cells	
Fixed Charge/cm-3	Voc/V	Jsc/mA/cm2	FF/%	Eff/%	pFF/%
-1E+12	0.7248	41.35	82.14	24.62	85.40
-2E+12	0.7289	41.41	82.65	24.94	85.63
-3E+12	0.7301	41.42	82.83	25.05	85.71
-4E+12	0.7306	41.42	82.93	25.10	85.75
-5E+12	0.7310	41.42	82.99	25.13	85.77

Monitoring PBC module power after CID

• Current injection results in 5.8W power gain for modules, but it gradually decreases in storage

Summary

- It is possible to mass produce p-TBC cells with 25% efficiency, as well as p-TBC modules with 585W power
- p-TBC cells have relatively high tolerance for leakage current. No abnormality is observed when leakage current is under 3A. Generally, p-TBC has 10 times better tolerance for leakage current than that of PERC. Although further investigation is required if leakage current becomes higher.
- p-TBC cells under **repeated flashing**, as well as p-TBC modules after **CID**, will exhibit **temporary efficiency gain**
 - A possible cause could be that the FeGa in Ga-doped wafers would decompose under light exposure or under current injection. And such decomposition would enhance cell efficiency temporarily, which reverts when external stimulant (photo- or current injection) is removed
 - > Another possible cause is the temporary improvement of AlOx passivation under external stimulant
- There are irregularities in cell efficiencies, which is caused by the differences in wafers from various manufacturers.
 Current injection can alleviate such irregularity but
- CID induced Module power is not stable
- The stability of photo-induced power gain in modules needs long-term monitoring when they are fielded.

Thanks